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Abstract 

To gain insight to the nature of the order-disorder  transformation in alloys, the Ising model with nearest- 
neighbour interactions is frequently used. The three-dimensional Ising model cannot be solved exactly, but modern 
approximation methods yield results which do not differ widely from exact solutions. Their mathematical derivations 
are complicated according to the fascinating physical features of the critical point. However, in the present study 
it could be shown that the Ising order--disorder temperatures of the simple cubic and b.c.c, lattices can be derived 
with sufficient accuracy from a simple graphical interpolation method. The specific heat vs. temperature curves 
are calculated. They show second-order transitions with rather high values of remaining short-range order at 
temperatures above the critical temperature. 

1. Introduction 

In alloys, in the case of substitutional ordering on 
a fixed lattice, the most important interactions are short 
ranged, i.e. a few interatomic distances at most, whereas 
long-range interactions are negligible. Short-range order 
as well as long-range order are thus consequences of 
local interactions. 

Ordering in substitutional solid solutions means the 
special atomic arrangements characterized by higher 
than random probability of finding unlike atoms as 
nearest neighbours. When at high temperatures the 
disordering tendency of thermal agitation is high, any 
specific atom succeeds in surrounding itself with only 
a slightly greater than random number of unlike atoms. 
The atomic arrangements change with time, but if we 
were to "freeze in" an atomic distribution at any moment 
and count the numbers of like and unlike nearest- 
neighbour pairs, we should find the number of unlike 
pairs to be higher than for a random distribution. At 
lower temperatures the non-random correlations be- 
tween the positions occupied by the different atomic 
species are higher in magnitude and effective over 
greater distances. Below the critical temperature long- 
range order appears. In this state it is possible to classify 
all the lattice sites in the crystal into sublattices, each 
of which tends to be occupied predominantly by one 
kind of atom. The symmetry of the lattice undergoes 
a step change during the order-disorder transition, 
whereas the internal energy changes continuously: the 

order-disorder phenomena are second-order phase 
transitions [1]. They are members of the family of 
critical phenomena [2] which in principle can be de- 
scribed by one single theory. As the alloy is cooled, 
the long-range order parameter [3] remains zero until 
the critical temperature Tc is reached, and then the 
alloy abruptly becomes long-range ordered. If the tem- 
perature is reduced further, the value of the long-range 
order parameter increases smoothly. 

To gain insight to the nature of critical phenomena, 
the Ising model is ~ frequently used. The highlight in 
any discussion of the Ising model is Onsager's solution 
for the H =  0 partition function for a two-dimensional 
lattice [4]. He has developed a method that can be 
carried through exactly in the cases of one- and two- 
dimensional lattices, but the application to real three- 
dimensional lattices is not possible. Figure 1 shows the 
specific heat of the two-dimensional Ising model as 
obtained from the exact solution of Onsager, compared 
with the Bethe approximation and the Kra- 
mers-Wannier and Kikuchi approximation [5-9]. On- 
sager was able to demonstrate that the specific heat 
possesses a logarithmic divergence at Tc when ap- 
proached from either side of the transition. 

2. Basic assumptions 

In the Ising model used as a model of order-disorder 
[10], the energies EAA, EBB and EAB associated with 
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Fig. 1. Specific heat of the two-dimensional Ising model as obtained 
from the exact solution of Onsager (solid curve), from the Bethe 
approximation (dotted curve) and from the Kramers-Wannier 
and Kikuchi approximation (broken curve). 

the A-A, B-B and A-B nearest-neighbour pairs are 
taken as constants irrespective of their environments 
and the temperature. 

The total energy of the crystal is the sum of the 
pair energies: 

E = nAAEAA + nBBEBB + nABEAB (1) 

where nAA (resp. naB, nBB) is the number of A-A (resp. 
A-B, B-B) nearest-neighbour pairs. 

Binary substitutional alloys with incompressible sim- 
ple lattices are considered, simple cubic and b.c.c., in 
which cases all sites are equivalent. As an approximation 
it is assumed that the lattice vibrations are independent 
of the configurations of the atoms on the lattice sites. 
Empty lattice sites and atoms in interstitial positions 
are not considered. 

The only parameter which enters the Ising model, 
the ordering energy v [11], 

v = EaB - 0.5 (EAA + EBB) (2) 

is assumed to be negative according to a tendency for 
ordering. 

Equation (1) gives an explicit expression of the energy 
as a function of the configuration of the system. As 
soon as the system is in thermal equilibrium, each 
configuration i has the usual statistical weight exp( - E J  
kT), where k is the Boltzmann constant and T is the 
absolute temperature [12]. Considering all the config- 
urations corresponding to given concentrations of the 
alloy constituents, one generates the canonical statistical 
ensemble. 

We fix the volume V, the temperature T, the numbers 
of atoms of the constituents, NA and NB, and the total 
number of sites, N, in our crystal. The energy E of 
the crystal is not fixed but depends at any moment on 
the particular arrangement of the atoms among the 
lattice sites (the configuration). 

The probability of the configuration i depends solely 
on its own energy Ei and is given by 

exp(-E,/kT) (3) 
Pi= Z 

where Z is the partition function: 

The mean energy is 

P~=EpiE, (4) 
i 

The total number of nearest-neighbour bonds is given 
by 

z 
n ~  + nBB + naB=N ~ (5) 

where z is the coordination number. 
For an alloy with the exact stoichiometry AB, 

n ~ = n B B  for all configurations. Therefore a certain 
value of nAA corresponds to a certain value of the 
energy E (eqns. (1) and (5)). 

The probability of E or the probability of nAA is 
given by 

p(nAa)=constXw(na_~) exp( -Ek(~ aA)) (6) 

where w ( n ~ )  is the number of configurations corre- 
sponding to n ~ .  

= - 2vnAA +N 2 EaB (6a) E ( n ~ )  

for the stoichiometric composition AB. 
For a crystal with a very large number of atoms, the 

peak of p(naa) vs. n ~  is extremely sharp. It follows 
that the crystal will spend by far the greater proportion 
of its time in configurations with n ~  very close to the 
most probable value and the average properties of the 
system will therefore correspond very closely to its 
properties when it is in configurations with the most 
probable nAA value. 

For a hypothetical crystal with small N the peak of 
p(n~,)  reduces to a flat maximum, still corresponding 
to the most probable nAa value n~(equ) .  Provided 
that for a given composition 
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nAA(equ) 
=const(T) (7) 

N 

we can perform the extrapolation N--*NL and the 
equilibrium value of the energy can be determined 
from the maximum of p(nAA). 

E =N~ ~q" U [ ( E ~  +EBB)nAA(equ) 

Z 
+ (N ~ - 2n~(equ))E~,m] (7a) 

for the stoichiometric composition AB. NL is Avogadro's 
number. 

3.1. One-dimensional chain 
In a hypothetical one-dimensional stoichiometric crys- 

tal AB the coordination number z=2  and NA=NB = 
N/2. In order to produce periodic boundary conditions, 
the chain is closed: the first atom of the chain and the 
last one are nearest neighbours. 

It can be shown that W(nAA,N) is given by 

/ (N/2-1)! \z /N  \ 
' - - - -  N - - - -nAa  0 w= ~(N/2--nAA)InAA') / 2  ) for nAA> ( 8 )  

2 for nAA=0 

where nAA can take the values 0, 1, 2, 3 . . . . .  N / 2 - 1  
and N is an even integer. 

Using eqn. (8), the validity of eqn. (7) can be verified 
and the solution for the linear Ising lattice can be 
obtained in good agreement with the exact solution 
(4). 

3.2. Three-dimensional lattices 
Since the three-dimensional lattice consists of crossing 

one-dimensional chains, one may construct small closed 
three-dimensional arrangements of atoms representing 
the lattice type under consideration and count the 
number of A-A nearest-neighbour pairs for each con- 
figuration. 

In the case where NA=NB and N - 8  there exist 

N! 
-70  

(N/2)!(N/2)! 

distinct configurations. 
Figure 2 shows the simple cubic and b.c.c, structures 

in the " N = 8 "  version. The complete set of nearest- 
neighbour pairs is listed in Fig. 2 in order to indicate 
the way of closing the three-dimensional arrangements. 
The maxima of t h e p ( n ~ )  curves are found by graphical 
interpolation (Fig. 3). From eqns. (1), (5) and (7a) the 
equilibrium energies were derived for a series of tem- 
peratures. The resulting Cv vs. T curves are shown in 
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Fig. 2. Closed a r rangements  of  eight  a toms represent ing  crystals 
with s toichiometr ic  composi t ion AB. Whi te  circles are A atoms, 
black circles are B atoms. 

Figs. 4 and 5. They resemble Onsager's exact curve 
for the two-dimensional lattice (Fig. 1). 

In Table 1 the resulting values for the critical tem- 
perature of order-disorder, To are compared with the 
results of established methods [7, 13-20]. 

4. Discussion 

The order-disorder transition in alloys is one of the 
cooperative phenomena. It is a process which depends 
upon the interplay of a large number of atoms. 

How many atoms are needed in a statistical model 
in order to determine the critical properties? 

Wilson [2] needs for the renormalization group theory 
about 106 lattice sites: "The array must be at least as 
large as the largest fluctuations at the temperature of 
interest". 

The partition function needs the total macroscopic 
quantity of one mole of atoms because its use is based 
on the identity of the mean value and the most probable 
value of the energy. 

The Monte Carlo method extrapolates from the be- 
haviour of 1000 or 2000 atoms at least [20]. The proper 
choice of the system size N is very important in Monte 



P(nAA) 

R. Krachler Order-disorder in binary substitutional alloys 

NgCt- tvDe 

P[nAA) 
q 

18 

i 
\ 
\ 

I~)'~"~v ~ 200K 
2 t, 6 8 n , .  

f ' x  

e 
k 

J L -- 275 K 
v 

2 t, 6 8 nAA 

• ¢atcutafed poinf 

---  inferpotafed curve 

P("AA) 
q 

" O ,  

/ . 
f 

J 

I I 

2 ~ 

P(nAA) 

! 

O 

i ~[~"---~ 270 K 
v 

t, 6 8 nAA 

' 0  IO00K 

8 nAA I I I I I 1 
330 340 350 360 370 380 390 T ( K  

Fig. 3. Probability of nAA VS. nAA at different temperatures for 
the eight-atom arrangement representing the NaCl-type structure. 
The ordering energy v = - 1 0 0 0  J mo1-1. 
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Fig. 4. Specific heat of the three-dimensional Ising model with 
coordination number six (NaC1 type) as obtained from the present 
study. The ordering energy v = -  1000 J mo1-1. 
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Fig. 5. Specific heat of the three-dimensional Ising model with 
coordination number eight (CsC1 type) as obtained from the 
present study. The ordering energy v = -1000 J mo1-1. 

TABLE 1. Order-disorder critical temperature values 

Method kT¢/v kTc/v Reference(s) 
(NaC1 type) (CsCI type) 

Bragg-Williams 3 4 3, 11, 13 
Quasi-chemical 2.465 3.48 5, 11, 13 
Li 2.42 3.396 14 
Kurata et al. 3.278 18 
Fosdick-James 2.3145 17 
Kikuchi 2.3049 7 
Domb 2.181 3.076 16 
Wakefield 2.25 15 
Monte Carlo 3.05 20 
"N= 8" 2.245 3.060 Present study 

However ,  in some cases the smallest possible ar- 
r angement  o f  a toms that  includes the complete  infor- 
mat ion  on the crystal s t ructure may be sufficient. As 
could be shown above, the Ising o rde r -d i so rde r  tran- 
sition t empera tu re  o f  the simple cubic and b.c.e, lattices 
can be derived with sufficient accuracy f rom the variation 
in the posit ions of  only eight atoms. 

A c k n o w l e d g m e n t s  

Carlo simulations. Accord ing  to Binder  [21], reliable 
information on the behaviour  o f  the infinite system is 
obtained only if the linear dimension is much larger 
than the correlat ion length. 

The  au thor  wants  to thank Dozen t  Dr. P. Terzieff  
for a thorough review of  this manuscr ip t  and Dozen t  
Dr.  H. Ipser  and Professor  Dr.  K. L. Komarek  for 
their pe rmanen t  interest in this work. 
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